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Abstract. The stability of a liquid rocket engine (LRE) has been extensively studied in foreign
space programs, mainly because the combustion chamber, by itself, is a source of unstable
processes. The next phase of the Brazilian space program requires a reliable engine to fulfill
the mission goals. Thus, understanding and predicting the influence of self-oscillating process
is a necessity. In the present work, it is modeled several components of a LRE, which is able
to be part of the upper stage of the Brazilian VLS-2 rocket. The combustion chamber, the in-
jector head, the cooling jacket and the pipelines constitute a system that is simulated by
means of the MATLAB/SIMULINK. Afterwards, the stability of the system is analyzed for
three parameters of great importance for such analysis. The stated problem is solved by the
construction of a region of stability, using two criteria, Mikhailov and Hermite-Biehler, to
find out the stability limits.

Keywords: Liquid rocket engine, liquid propulsion, rocket engine, dynamic modeling, stability
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1. INTRODUCTION

A Liquid Rocket Engine (LRE) contains several sources of intense pressure fluctuations
caused by turbulent flow in feed line, fluttering of pump wheel blades, vibrations of control
valves, unsteady motion in combustion chamber and the gas generator (Volkov et al., 1978).
The result of the coupling of these oscillations with the natural frequencies of the system is
the generation of instability, which is often observed with catastrophic consequences.

The main aim of the present work is the development of mathematical models for several
units of a typical LRE system, namely, the combustion chamber, the injector head, the cooling
jacket, the mixture ratio regulator and the propellant pipelines. The modeling of the system is
made by using the knowledge of its working principles and the characteristics of the LRE hy-
dropneumatic system. The simulation, step response, is carried out by means of the software
MATLAB/ SIMULINK. The system is simulated by taking into account two different models,
with and without the effect of fluid compressibility and pipeline elasticity.

In addition to its dynamical characteristics, the system stability is analyzed for three se-



lected parameters, inside a range of values, so that the system is stabilized. The Mikhailov and
the Hermite-Biehler criteria are used to find these limits of stability.

2. HYDROPNEUMATIC SCHEME OF THE ROCKET ENGINE

The hydropneumatic system of a LRE has a great number of components, including: a
combustion chamber, turbopump unit, gas generator, tanks, valves, regulators, pipelines, and
thrust vector control nozzles (see Fig. 1).

1- Combustion chamber;
2- Gas generator; 3- Tur-
bine; 4- Fuel pump; 5-
Oxidizer pump; 6- Heat
exchanger; 7- Thrust
regulator; 8- Main oxi-
dizer valve; 9- Mixture
ratio regulator; 10-
Thrust vector control;
11- Electro-pneumatic
valve for the pre-cooling
system; 12- Propellant
filling valve; 13- Electro-
pneumatic valve for the
helium feeding; 14- He-
lium filling valve; 15-
Fuel cut-off valve; 16-
Pressure regulator; 17-
Nitrogen distributor for
pressurizing the electro-
pneumatic valve; 18-
Temperature regulator;
19- Pyrotechnical igniter;
20- Pyrotechnical car-
tridge.

Figure 1- Hydropneumatic system of the rocket engine

3. THE SYSTEM MODELING

The modeling of the system, at the nominal regime of operation, is executed by using the
knowledge of the working principles and the main characteristics of the LRE hydropneumatic
system, Fig.1. The main component blocks are combustion chamber, injector head, mixture
ratio regulator, feed line and the cooling jacket.

3.1 Combustion chamber

The combustion chamber is a device where oxidizers and fuels are mixed and burned to
produce hot gases that are expanded through a convergent-divergence nozzle, producing the



desired thrust. The combustion gases are assumed ideal, and the steady flow in the nozzle is-
entropic and the propellants are ideally stirred. The pressure in the combustion chamber
(∆Pcc) is the output parameter, the fuel mass flow rate (∆mf.cc) and oxidizer (∆mo.cc) are the in-
put parameters of the nominal regime. The Laplace transform of the combustion chamber
equation, while considering the time delay effect, (τcc), is obtained using the mass equilibrium
equation of the nominal regime of operation and the energy coefficient (Φcc) to represent the
burning and nozzle efficiency (Kessaev, 1997)
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According to Gladkova (1997), the burning process time constant, (Tch), the gain constants for
the oxidizer line (K1) and for the fuel line (K2) are given by:
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where Acr is the throat area, Cstar.cc is the characteristic velocity of gas, Vcc is the CC volume,
Tcc is the gas temperature, Rcc is the gas constant and Km.cc is the propellant mixture ratio
(O/F).

3.2 Injector head

The fuel injection is an essential process of the LRE because all feedback couplings of
the combustion chamber are realized (Bazarov & Yang, 1998). Here, the injector head is con-
sidered a constriction of fixed area (Ainj.i), from basic fluid mechanics it is possible to derive
the orifice flow equations using energy, momentum, and mass continuity laws (Kessaev,
1997). The main result is that the injector pressure drop varies with the square of the flow rate
of liquid propellants.

The mass flow rate through each injector (∆minj.i) is the output parameter, the pressure of
propellant injection (∆Pinj.i) and combustion chamber (∆Pcc) are the input parameters. It is as-
sumed that the propellant is an incompressible liquid, the walls of the injector are rigid and
the heat transfer problem is neglected. The Laplace transform, for the i-propellant injectors is:

cc4i.inj3i.inj PKPKm ∆∆∆ ⋅+⋅= . (5)

The gain constants K3 and K4 for i-propellant injector are:
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where ρ i is the propellant density, Ninj.i is the number of injectors, µinj.i is the discharge coeffi-
cient of the injector and the subscripts, i = o, f, stand for oxidizer and fuel respectively.

3.3 Throttle of mixture ratio regulator

For simplicity, the modeling of the throttle mixture ratio regulator follows the same ap-
proach as the injector head model. The liquid is considered incompressible, with rigid walls.
Besides, the cavitation and the mass flow blocking due to high flow acceleration in the throt-
tling device are not considered here.

The throttle acts as an orifice with a variable area A(x), where x represents the valve
opening coordinate, controlled by an electrical driver. The input parameters for the regulator
are the inlet pressure (Pin.reg), the mass flow rate through (mf.cc) and the regulating area (µFreg).
The output parameter is the outlet pressure (Pout.reg). Thus, the Laplace transform is written as:

reg9cc.f11reg.in10reg.out FKmKPKP µ∆∆∆∆ ⋅+⋅+⋅= . (8)

where the gain constants for throttle of mass ratio (K9, K10 and K11) are:
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and where ρf is the fuel density, µFreg is the product of the discharge coefficient times the area
of regulator passage.

3.4 Cooling jacket and pipelines

The flow in the pipelines is considered as one-dimensional and the influence of the accel-
eration in the flow is taken into account, as an inertia term. The friction is considered as a
fluid resistance. The discharge coefficient (µpipe.i) is obtained experimentally, it can vary from
0.6 to 0.9 (Kessaev, 1997). The liquid density (ρpipe.i) is considered constant or variable, de-
pending on the model. The Laplace transform for i- propellant pipeline considering the liquid
compressibility and the pipe elasticity is written as:
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where the gain constant K15 and K16, and the time constant of i-propellant pipeline (Tpipe.i) are,
respectively:
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For a given tube with equivalent length (Lpipe.i): Pinj.i (Pi) represents the pressure at the
end (beginning) of the pipe; mpipe.i (mi) is the mass flow rate at the end (beginning); Apipe.i is

the cross-sectional area; Vpipe.i. is the pipe (liquid) volume; (Ipipe.i) is the fluid inertia in the
pipe segment, (Ceq) is the equivalent capacitance, (Rpipe.i) is the liquid resistance. They are
written as below:

i.pipe

ii.pipe
i.pipe

A

L
I

ρ
= . (16)

iw

ipipe

ipipe
LOx

ipipe

ieq
Et

r
V

V
C

.

.
.

.
.

2
⋅+=

β
. (17)

( )2i.pipei.pipe

cc.i
i.pipe

A

m
R

µ
= . (18)

where E is the elastic modulus of the tube; tw.i is the thickness of the tube wall, rpipe.i is the in-
ternal radius of pipe and βLox is the Bulk modulus for Lox or kerosene.

Figure 2 – Block diagram of the model considering the liquid compressibility

The mathematical models are used to simulate many aspects of engine system operation.
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It requires a numerical definition of all parameters of the model, time constants and the gains.
The block diagram representation (Fig. 2) takes into account the liquid compressibility and
pipeline elasticity. A simplified model is obtained when the effects of the pipelines and cool-
ing jacket are neglected.

4. ANALYSIS OF DYNAMIC CHARACTERISTICS OF THE SYSTEM

The performance of dynamic systems in the time domain can be defined in terms of the
time response to a step function input, i.e., the step response.

Figure 3- Comparison of the step response for the compressibility effect

Figure 3, shows the step response comparing the effects of liquid compressibility and
pipeline elasticity in the pipelines and the cooling jacket. This comparison shows these effects
can be neglected, at least when the LRE works with liquid oxygen and kerosene, because
these propellants have large moduli of compressibility.

5. STABILITY ANALYSIS OF THE SYSTEM

The most interesting task, in the study of stability process, is the analysis of the influence
of system's parameters in its stability. The stated problem is solved by the construction of a
region of stability, i.e. determining which combination of parameters defines the limit of sta-
bility. Here, two methods are applied to construct this region: Mikhailov and Hermite-Biehler.

The three selected parameters have the greatest influence on the development of low fre-
quency oscillations, i.e., a small change in these parameters are able to take the system to in-
stability. The pressure drop in the injector head (∆Pinj) establishes the connection between
chamber and flow oscillations. The time delay of combustion chamber (τcc) is greatly influ-
enced by the propellant properties. Decreasing it, permits the increase of stability. The time
constant of combustion chamber (Tch) is numerically defined as the time that the gas stays in-
side the chamber, and also has influence on stability (Volkov et al., 1978).

5.1 Stability region by Mikhailov Criterion.

The Mikhailov criterion is a classical tool for stability analysis of a nominal plant
(Gladkova, 1997). It requires construction of a frequency plot of the characteristic polyno-



mial. For this criterion, the system is located at the stable region if the frequency plot of the
characteristic equation, M(ω)=P(ω)+jQ(ω), with ω from zero to infinity, encircles the origin
of the coordinate system (0,0) in a counterclockwise direction.

The linear dynamic behavior of combustion chamber at the nominal working regime, for
a constant propellant mixture ratio is described by:
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The total mass flow rate into combustion chamber (mcc) is a function of pressure differ-
ence between combustion chamber (Pcc) and injector head (Pinj):
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The characteristic equation is obtained the by the Laplace transform of Eq. (21):
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The parameters of stability are Tch, ∆Pinj and τcc, whose values determine the roots of the
characteristic equation, i.e., the stability limits. Substituting the operator s=jω, in Eq. (23),
and changing the function representation to Euler's form, it is possible to obtain the equation
for stability limits:

( ) 0)(sinPTj)cos(P ccinjchccinj =−⋅++ ωτω∆ωτ∆ (24)

By means of Eq. (24), the limit of stability can be build as function of two parameters:
∆Pinj -τcc, ∆Pinj -Tch or Tch-τcc. These parameters of interest are isolated to simplify the cal-
culation, and the result is:
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each value of k (0,1,2,3,4,...) corresponds to a limit of stability. For simplification, it is con-
sidered the case when k=1. The result of Mikhailov criterion to find the limits of stability is
shown in Figure 4. The parameters of interest are isolated (∆Pinj -τcc) and the third parameter
(Tch) is used to establish the different curves. All the points under the limit of stability, for ex-



ample the points in the axis of relative pressure drop of injector head, are considered inside of
the stable region.

Figure 4- Boundaries of stability of combustion chamber for different values of Tch.

Varying ω from zero to infinity it is possible to build the limit of stability, which divide
the plane into two parts; this is showed in the Fig. 4. In one part the set of values of ∆Pinj and

τcc assure that the process is stable, and in another one is not stable.

The Mikhailov criterion sometimes can offer some obstacles for obtaining a region of
stability. Trying to overcome these barriers, it is presented an analytical solution for the
problem of stabilizing a given system. The method is based on the Hermite-Biehler theorem
that provides necessary and sufficient conditions for the system stability.

5.2 The stability limits by the Hermite-Biehler Theorem.

The Hermite-Biehler theorem, also called Interlacing theorem provides necessary and
sufficient conditions for the Hurwitz stability of a given real polynomial (Ho et al., 1997).

Here, it is reproduced without proof the algorithm to determine the limits of stability for a
liquid rocket engine. The characteristic equation of the model considering the liquid incom-
pressible is analyzed for two unknown parameters, Tch  and τcc.

Limits for the time delay of combustion chamber (τcc). For the mathematical model of
the liquid rocket engine, taking into account the time delay and liquid inertia, the characteris-
tic equation is given by:
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The time delay of combustion chamber (τcc) is the parameter of analysis to find the range
of stability. For convenient nomenclature it is assumed:
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Both polynomials of the characteristic equation contain even and odd terms:
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For applying the Interlacing Theorem, it is necessary to exclude all the odd terms of N(s),
i.e., N(s) must be a real number. The easiest way is making δ(s,τcc) times N'(s), where
N'(s)=N(-s). It follows that:
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Afterwards, the real and imaginary parts of the Eq. (28) are separated and it is made s = jω:
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The main idea is to study the root distribution of the Eq. (28) to know how many roots are
located in the right half of the complex plane. By means of the Lemma 5.1 (Ho et al., 1997),
δ(s) is Hurwitz if and only if:
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Where the “signature” of N'(s), σ(Ν'(s)), is defined as: ( ) 'r'l)s('N −=σ . From Definition
3.1 (Ho et al., 1997) l' and r' are the roots number of N'(s) on the left-hand side and right-hand
side of complex plane, respectively. There are two real, non-negative distinct finite zeros of
q(ω), hence l = 2. Thus: ( ) l)s('N =σ .

From Definition 5.1 (Ho et al., 1997), Since n + m' = 8 is even and l =2, from the stated
definition, the set A for all possible strings {i0, i1, i2} is:



















−
−−−−

−−−−
−−−−−−−

=

}1  ,1  ,1{}1  ,1  ,0{}1  ,1  ,1{

}1 ,1  ,1{}1 ,1  ,0{}1 ,1  ,1{

}1  ,1 ,1{}1  ,1 ,0{}1  ,1 ,1{

}1 ,1 ,1{}1 ,1 ,0{}1 ,1 ,1{

A

Here ( ) 3)s('N),s( cc =⋅τδσ .

According to the Definition 5.3 (Ho et al., 1997) and ( ) ( ) 1)(qsgn1 12 =∞⋅− − , it is neces-

sary to find the subset of strings F* satisfying: 3ii2i 210 =+− . Hence F* = {I1} where

I1={0, -1, 1}.
The next step is finding the range of τcc which leads the system into the region of stabil-

ity. Each string must satisfy the following condition: ( ) 0i)(p)(p tt2cct1 >⋅+ ωτω , 20t �= .

It is necessary define the third frequency as infinity ( ∞=2ω ). For I1 = {0, -1, 1}:
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For ω0 = 0, p1(ω0) = p2(ω0) = 0, this case does not impose any additional constraint on τcc.
Thus, it follows from Theorem 4.1 (Ho et al., 1997) that the stabilizing τcc  values must satisfy
the string of inequalities above:

036.00 cc <<τ .



It is possible to check the roots of characteristic equation for some values of τcc. When
the real part of a root is positive, so it is ensured that the system is unstable. Otherwise, it is
stable.

Applying the same procedure used to find the limits for the time delay in the characteris-
tic equation as function of time constant of combustion chamber (Tch):
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It follows from (Ho et al., 1997) that the stabilizing Tch values must satisfy the following
inequality: 0Tch > .

It is possible to check the roots of characteristic equation for some values of Tch. When
the real part of the root is positive, the system is unstable. Otherwise, it is stable. The value
for the time delay of combustion chamber is fixed (τkk =0.002s) and it is used the first order of
Padé approximation.

Undoubtedly, the greatest advantage of the Hermite-Biehler Theorem is the possibility of
finding the limits of stability for any numbers of unknown parameters, since they appear line-
arly in the coefficients of characteristic equation. Unfortunately, the polynomial, regarding the
two analyzed parameters, has non-linear coefficients.

6. CONCLUSION

The dynamic analysis of the LRE system model composed of a combustion chamber, in-
jector head, cooling jacket, thrust regulator and fuel pipelines lead to following conclusions.
The modeling of the system is appropriate since the main factors have been considered, it was
suspected that the liquid compressibility would be another important factor of influence on the
system dynamic. The comparison between the models with and without the compressibility
effect, by means the step response curves, showed that this influence could be neglected.

The region of stability was obtained, for the three parameters (τcc, Tch and ∆Pinj) by means
of two different methods, Mikhailov and Hermite-Biehler criteria. Each method has its own
peculiarities and applicability. However, the Hermite-Biehler criterion is the most simple to
implement, because it is not necessary to work with complex number (Mikhailov). The Her-
mite-Biehler provided the limits of stability for the time delay and the system time constant,
and these limits were greater than those obtained by the Mikhailov.
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